AN UPPER BOUND FOR THE LEAST DILATATION

MAX BAUER

ABSTRACT. We given an upper bound for the least dilatation arising from a pseudo-Anosov map of a closed surface of genus greater or equal to three.

1. Introduction and background

Introduction. Throughout the paper, $F = F_g$ will be a closed surface of genus g with negative Euler characteristic. Suppose that (\mathcal{F}, ν) is a measured foliation (see [FLP]) and ϕ is an orientation preserving homeomorphism of F, then we define $\phi(\mathcal{F})$ to be the foliation whose leaves are the images of the leaves of \mathcal{F} . Furthermore, $\phi_*(\nu)$ is a measure on $\phi(\mathcal{F})$ that is defined as the push forward of the measure ν under ϕ . To be more explicit, if α is an arc transverse to the foliation $\phi(\mathcal{F})$, then $\phi_*(\nu)(\alpha) = \nu(\phi^{-1}(\alpha))$. We define $\bar{\phi}(\mathcal{F}, \nu) = (\phi(\mathcal{F}), \phi_*(\nu))$.

An orientation preserving homeomorphism ϕ of F is pseudo-Anosov (or p.A.) if there is a pair of transverse arational (i.e. no closed leaves) measured foliations (\mathscr{F}, ν) and $(\mathscr{F}^{\perp}, \nu^{\perp})$ in F, such that $\bar{\phi}(\mathscr{F}, \nu) = (\mathscr{F}, \lambda \nu)$ and $\bar{\phi}(\mathscr{F}^{\perp}, \nu^{\perp}) = (\mathscr{F}^{\perp}, (1/\lambda)\nu^{\perp})$, for some $\lambda > 1$. λ is called the *dilatation* of ϕ , and we define the 'spectrum' of F as

$$\operatorname{Spec}(F) = \{ \log \lambda : \lambda \text{ is the dilatation of a p.A. self-map of } F \} \subset \mathbb{R}$$
.

Spec(F) has a geometric interpretation as the collection of Teichmüller distances between Riemann surfaces of the same topological type as F (see [Ab]). Furthermore, a pseudo-Anosov map ϕ realizes the smallest topological entropy in its homotopy class and the topological entropy of ϕ is given by the logarithm of its dilatation (see [FLP]). It is known that Spec(F) is discrete (see [AY]).

The main goal of this note is to show that the smallest element δ_g of $\operatorname{Spec}(F_g)$ allows the upper bound

$$\delta_g \le \frac{\log 6}{g}$$
, for all $g \ge 3$.

This is an improvement of the upper bound given in [P2].

Background. We begin by establishing some notation. The group of $l \times l$ matrices over $\mathbb Z$ is denoted by $\mathrm{Mat}_l(\mathbb Z)$, and the spectrum of $A \in \mathrm{Mat}_l(\mathbb Z)$ is the set of eigenvalues of A listed with multiplicity. We say that an eigenvalue λ in

Received by the editors January 12, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 57N05.

Partially supported by the N.S.F.

the spectrum of A has maximum modulus if the modulus of λ strictly exceeds the modulus of any other element of the spectrum of A. Suppose next that A is an $n \times m$ matrix with n, $m \ge 1$, then by an expression of the form A > 0, $A \ge 0$, etc. we mean that the relevant relation holds for each component of A. A matrix $A \in \operatorname{Mat}_{l}(\mathbb{Z})$ is said to be Perron-Frobenius or P.F. if $A \ge 0$ and for some n > 1 we have $A^n > 0$.

Perron-Frobenius matrices have the following well known spectral properties (see [Ga]).

Theorem (Perron-Frobenius). The spectrum of a P.F. matrix A contains an element λ of maximum modulus that is positive real with corresponding eigenvector x^* strictly positive. x^* is the unique positive eigenvector and λ is a simple root of the characteristic polynomial of A.

The main tool in the present investigation is the theory of train tracks as introduced by Thurston [Th]. The material that is needed for the present investigation is collected in the section on train tracks in [Ba]. We refer the reader who wishes more information on surface homeomorphisms and train tracks to [CB, FLP, Th, Pa, PP] and the monograph on train tracks [HP]. We remark in particular that if τ is a train track embedded in the surface F, and if $V(\tau)$ denotes the set of measures on τ , then there is an embedding $\mathcal F$ of $V(\tau)$ into the space of (equivalence classes of) measured foliations $\mathscr{MF}(F)$. Moreover, if τ is invariant under a homeomorphism ϕ of F, then there are induced maps $\hat{\phi} \colon V(\tau) \to V(\tau)$ and $\bar{\phi} \colon \mathscr{MF}(F) \to \mathscr{MF}(F)$ such that $\mathcal F \circ \hat{\phi} = \bar{\phi} \circ \mathcal F$.

2. An upper bound by example

A class of pseudo-Anosov maps. We describe in this section the map that yields the upper bound mentioned in the introduction.

If k is a simple closed curve embedded in F, then we denote the (right handed) Dehn twist along k by τ_k . (For a definition of Dehn twist see for example [Ba].) For $g \geq 3$, we take the surface F_g as a sphere with g handles attached so that F_g is invariant under the rotation $\rho = \rho_g$ by $2\pi/g$ about the axis L through the north and south pole of the sphere. Figure 1 shows the case g=3. We then define

$$\psi=\psi_g=\rho\circ\tau_c^{-1}\circ\tau_b\circ\tau_a\,.$$

Whenever the dependency of an object on the genus g is clear we will simplify notation by suppressing this dependency. For example the maps ρ , τ_c^{-1} , τ_b and τ_a depend on g.

Our first goal is to show that ψ_g is (isotopic to) a pseudo-Anosov homeomorphism using the following pseudo-Anosov recognition theorem (see [CB]).

Theorem (Casson). A homeomorphism ϕ of F is isotopic to a p.A. map if there is a ϕ invariant train track τ that fills F, such that no proper subtrack τ' of τ is invariant under ϕ , and such that if τ itself is a subtrack of a ϕ invariant train track τ'' (not necessarily proper) then the induced map $\phi'': V(\tau'') \to V(\tau'')$ has no nonzero fixed point.

The train track that will allow us to apply the previous theorem is $\tau(g)$ as shown in Figure 2 in case g = 3. It is clear how $\tau(g)$ is defined (up to isotopy) for $g \ge 3$. We isotope $\tau(g)$ so that $\tau(g)$ is invariant under ρ . Note that

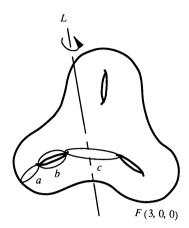


FIGURE 1. The surface F_g , in case g=3

 $\tau(g)$ has as complementary regions 2g tri-gons and 2g-gons, hence $\tau(g)$ fills the surface. The number of branches of $\tau(g)$ is 7g.

We need to be more precise as to how ψ_g acts on F_g and to that end we use the notation for branches of $\tau(g)$ as illustrated in Figure 2 in case g=3. Clearly we can isotope $\tau_b \circ \tau_a$ so that it fixes the switches of $\tau(g)$ and all of the branches except for b_1 , b_2 , and b_3 . We also isotope τ_c^{-1} such that it fixes the switches of $\tau(g)$ and only moves the branches b_4 and b_5 .

By choosing the central ties of a standard tie neighborhood of $\tau(g)$ carefully, we may assume that $\tau_b \circ \tau_a(b_1)$ intersects the central ties corresponding to the branches of $\{\rho^{g-1}(b_5), \rho^{g-1}(a_2), b_3, a_1, b_4\}$; also $\tau_b \circ \tau_a(b_2)$ intersects the central tie corresponding to the branch b_1 , and $\tau_b \circ \tau_a(b_3)$ intersects the central ties corresponding to the branches of $\{\rho^{g-1}(b_4), b_2, b_5\}$. Similarly, we may assume that $\tau_c^{-1}(b_4)$ intersects the central ties corresponding to the branches of $\{\rho(b_3), a_2, b_3, a_1, b_4\}$, and $\tau_c^{-1}(b_5)$ intersects the ones corresponding to $\{b_3, a_1, \rho(b_3), a_2, b_5\}$.

For future reference, we summarize

Lemma 1. For $g \ge 3$, $\tau(g)$ is a ψ_g invariant train track that fills F_g .

Note that if we define $\overline{B} = \bigcup_{i=0}^{g-1} B_i$, where $B_i = \{\rho^i(b_1), \ldots, \rho^i(b_5)\}$, for $0 \le i \le g-1$, then $\tau_c^{-1} \circ \tau_b \circ \tau_a$ only affects the branches B_0 . Whenever we need to assume that the branches of $\tau(g)$ are ordered, we choose the following ordering

$$(\rho^0(b_1), \ldots, \rho^0(b_5), \ldots, \rho^{g-1}(b_1), \ldots, \rho^{g-1}(b_5),$$

 $\rho^0(a_1), \rho^0(a_2), \ldots, \rho^{g-1}(a_1), \rho^{g-1}(a_2)).$

Note that this defines an induced ordering of the branches \overline{B} .

If ϕ is a composition of ρ , τ_c^{-1} , and $\tau_b \circ \tau_a$, then we define $\operatorname{Inc}(\phi)$ to be the incidence matrix of ϕ with respect to the ordering of the branches of τ specified above. We remark that $\operatorname{Inc}(\phi)$ is well defined by our convention of how ρ , τ_c^{-1} , and $\tau_b \circ \tau_a$ act on $\tau(g)$. Note that the distributive property of the 'hat' operator (i.e. $\widehat{\phi_1\phi_2} = \widehat{\phi}_1\widehat{\phi}_2$) implies that for example $\operatorname{Inc}(\tau_c^{-1} \circ \tau_b \circ \tau_a) = \operatorname{Inc}(\tau_c^{-1})\operatorname{Inc}(\tau_b \circ \tau_a)$.

The following lemma is crucial in showing that ψ_g is p.A.

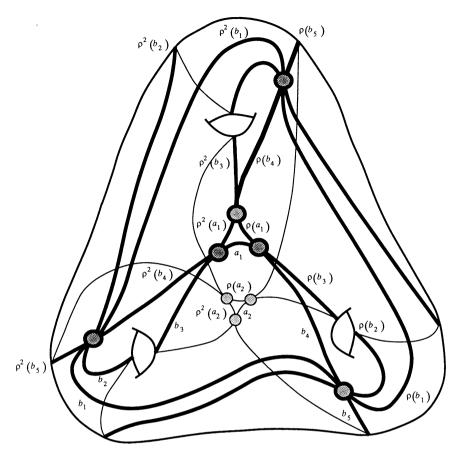


Figure 2. Invariant train track for ψ_g , in case g=3

Lemma 2. If $w^{(0)} \in \mathbb{R}^{7g}$ represents a nonzero weight on $\tau(g)$ (we do not require that the switch conditions hold), such that $w^{(0)}$ is positive on at least one branch of \overline{B} , then there is an n_0 such that for $n > n_0$, $\operatorname{Inc}(\psi^n)w^{(0)} > 0$.

Proof. Recall that $\tau_c^{-1} \circ \tau_b \circ \tau_a$ only moves the branches B_0 . This will be most important and used repeatedly without being mentioned.

Claim 1. Suppose that $T \in \operatorname{Mat}_5(\mathbb{Z})$ consists of those rows and columns of the incidence matrix $\operatorname{Inc}(\tau_c^{-1} \circ \tau_b \circ \tau_a)$ that correspond to the branches B_0 , then $T^4 > 0$.

We readily see that

$$T = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix},$$

and compute.

Claim 2. If $w\in\mathbb{R}^{7g}$ represents a weight on $\tau(g)$ that is positive on a set $B_0'\subset B_0$, then the weight $\mathrm{Inc}(\psi^{g-1}\circ\rho)w$ is also positive on B_0' . This is immediate.

Claim 3. If for some $0 \le t \le g - 1$, $w \in \mathbb{R}^{7g}$ is a weight that is positive on all branches of B_t , then $\text{Inc}(\psi^g)w$ is also positive on the branches B_t .

Indeed, $w' = \operatorname{Inc}(\psi^{g-t})w$ is positive on the branches B_0 , and as each row of T contains at least one positive entry, $w'' = \operatorname{Inc}(\tau_c^{-1} \circ \tau_b \circ \tau_a)w'$ is still positive on the branches B_0 . But then $\operatorname{Inc}(\psi^{t-1}\rho)w''$ is positive on B_t as desired.

Claim 4. If w is a weight that is positive on the branches of B_0 , then $w^* = M(\tau_c^{-1} \circ \tau_b \circ \tau_a)w$ is positive on $B_0 \cup \{a_1, a_2\}$.

Indeed, we already remarked in the proof of Claim 3 that w^* is positive on branches of B_0 , and the fact that w^* is positive on the branches a_1 and a_2 can be seen directly from our convention of how τ_c^{-1} and $\tau_b \circ \tau_a$ acts on $\tau(g)$.

We now take $w^{(0)}$ as in the statement of the lemma, hence there exists $t \in \{0, \ldots, g-1\}$, such that $w^{(0)}$ is positive on a branch of B_t .

We first prove that $\operatorname{Inc}(\psi^n)w^{(0)}$, for n large enough, is positive on the branches of \overline{B} . The proof is by induction on the number of i such that $\operatorname{Inc}(\psi^n)w^{(0)}$, for n large enough, is positive on the branches of B_i . We take the subscripts of B_i as elements of the cyclic group on g elements.

For the basis step, we remark that $w^{(1)} = \operatorname{Inc}(\psi^{g-t})w^{(0)}$ is positive on a branch of B_0 . It follows from Claim 1 and Claim 2 that $w^{(2)} = \operatorname{Inc}(\psi^{4g})w^{(1)}$ is positive on all branches of B_0 .

For the induction step we assume that for some n, $w^{(3)} = \operatorname{Inc}(\psi^n)w^{(0)}$ is positive on the branches of B_0 , ..., B_j , for some $j \in \{0, \ldots, g-1\}$. We first note that $w^{(4)} = \operatorname{Inc}(\psi^{g-j})w^{(3)}$ is positive on the branches of B_0 . But then $w^{(5)} = \operatorname{Inc}(\tau_c^{-1} \circ \tau_b \circ \tau_a)w^{(4)}$ is positive on the branches $B_0 \cup \{\rho(b_3)\}$ (as follows from our convention of how ψ_g acts on $\tau(g)$), hence $w^{(6)} = \operatorname{Inc}(\psi^{g-2}\rho)w^{(5)}$ is positive on the branches $B_{g-1} \cup \{b_3\}$. Using the fact that $w^{(6)}$ is positive on a branch of B_0 , we see as above, using Claim 1 and Claim 2, that $w^{(7)} = \operatorname{Inc}(\psi^{4g})w^{(6)}$ is positive on all branches of B_0 . We conclude that $w^{(8)} = \operatorname{Inc}(\psi^{j+1})w^{(7)}$ is positive on the branches of B_{j+1} . To complete the induction step, note first that $w^{(8)} = \operatorname{Inc}(\psi^{6g})w^{(3)}$. As $w^{(3)}$ is positive on the branches of B_0, \ldots, B_j , so is $w^{(8)}$ as follows from Claim 3.

We showed that for some $m \ge 1$ we have that $\operatorname{Inc}(\psi^m)w^{(0)}$ is positive on the branches of \overline{B} . To finish the proof of the lemma, we use Claim 4 to see that $\operatorname{Inc}(\psi^{m+g})w^{(0)}$ is positive on all branches of τ and the claim follows by taking $n_0 = m + g$. Q.E.D.

In order to show that ψ_g is pseudo-Anosov, we need to analyze the incidence matrix $Inc(\psi_g)$. We claim

Lemma 3. (a)

$$\operatorname{Inc}(\psi_g) = \begin{pmatrix} S_g & \overline{0} \\ C & P \end{pmatrix} \in \operatorname{Mat}_{7g}(\mathbb{Z}),$$

where $\overline{0}$ is the $5g \times 2g$ zero matrix and $P \in \operatorname{Mat}_{2g}(\mathbb{Z})$ is a permutation matrix. (Of course C is a $2g \times 5g$ matrix.) Moreover,

(b) the 'small' incidence matrix $S = S_g \in \operatorname{Mat}_{5g}(\mathbb{Z})$ of ψ with respect to the branches \overline{B} of $\tau(g)$ is P.F.

Proof. For the proof of part (a) we remark that ρ and hence ψ induces a permutation of the branches $A = \{\rho^i(a_j) : 0 \le i \le g-1 \text{ and } j=1, 2\}$. To be more specific, if w is a weight on $\tau(g)$ that is positive on a single branch

a of A, then $\operatorname{Inc}(\psi)w$ is positive only on $\rho(a)$. This explains the subblocks $\overline{0}$ and P of $\operatorname{Inc}(\psi)$.

For the proof of part (b) we define $e_i \in \mathbb{R}^{5g}$ to be the *i*th unit vector in \mathbb{R}^{5g} . To show that S is P.F. it is of course enough to show that there exists an $n \ge 1$ such that for $1 \le i \le 5g$ we have $S^n e_i > 0$. If for $1 \le i \le 5g$, we define $\bar{e}_i \in \mathbb{R}^{7g}$ to be the *i*th unit vector, then, using part (a), we readily see that it is enough to show that there exists an n such that for $1 \le i \le 5g$ we have that $\mathrm{Inc}(\psi^n)\bar{e}_i$ is positive on branches of \overline{B} . This, however, follows from Lemma 2. Q.E.D.

We can now prove

Proposition 4. For $g \ge 3$, ψ_g is pseudo-Anosov.

Proof. We need to check the conditions of Casson's theorem.

The first two conditions, namely that $\tau(g)$ fills F_g and is invariant under ψ_g follow from Lemma 1.

To show the third condition, suppose that $\tau' = \tau'(g)$ is a subtrack of $\tau = \tau(g)$ that is invariant under ψ_g . We will show that τ' cannot be a proper subtrack of $\tau(g)$.

We choose a nonzero measure μ' on τ' and extend μ' to a nonzero measure $\mu \in V(\tau)$ by defining $\mu(b) = \mu'(b)$, if b is a branch of τ' and $\mu(b) = 0$, otherwise. It is easy to see that any nonzero measure on τ is positive on some branch of \overline{B} , hence by Lemma 2, we can find n > 0 such that $\hat{\psi}^n(\mu)$ is positive on all branches of τ . ($\hat{\psi}$ being the self-map of $V(\tau)$ that is induced by ψ .) As we assumed that τ' is invariant under ψ , and as μ is zero on branches of $\tau \setminus \tau'$, the measure $\hat{\psi}^n(\mu)$ must also be zero on these branches. It follows that $\tau' = \tau$ as desired.

We are left to check the last condition in Casson's theorem, namely if τ is a subtrack of a ψ invariant train track $\tau'' = \tau''(g)$, then the induced map $\hat{\phi}'' \colon V(\tau'') \to V(\tau'')$ has no nonzero fixed point. An Euler characteristic argument shows that for τ'' to satisfy the fourth condition in the definition of train track, the branches of $\tau'' \setminus \tau$ must be contained in the closure of the two complementary g-gons of τ . But as ψ induces a rotation of these complementary g-gons, we readily see that τ'' can only be ψ invariant and satisfy the fourth condition in the definition of train track if $\tau'' = \tau$.

Assume now to derive a contradiction that $\mu \in V(\tau)$ is a nonzero fixed point of $\hat{\psi}: V(\tau) \to V(\tau)$, hence we have a nonzero fixed point $x \in \mathbb{R}^{7g}$ of $\operatorname{Inc}(\psi)$. As remarked above, any nonzero measure on τ is positive on some branch of \overline{B} , hence Lemma 2 applies to show that x > 0. It follows from Lemma 3 that x restricts to a nonzero fixed point \bar{x} of S. But as $S \in \operatorname{Mat}_{5g}(\mathbb{Z})$ is P.F. and integral, $S^n \geq 1$, for n large enough, and as 5g > 1, we see that S cannot have a nonzero fixed point. This contradiction shows that our assumption of $\hat{\psi}$ having a nonzero fixed point was absurd.

We showed that all the conditions in Casson's theorem are satisfied and conclude that ψ_g is indeed p.A. Q.E.D.

The upper bound. We will show

Proposition 5. For $g \ge 3$, the dilatation λ_g of ψ_g satisfies

$$\log \lambda_g \leq \frac{\log 6}{g} \, .$$

As a corollary we get our main result.

Theorem 6. The smallest element δ_g in $Spec(F_g)$ satisfies

$$\delta_g \leq \frac{\log 6}{g}$$
, for $g \geq 3$.

Before we prove the proposition some remarks are in order.

Remark. (a) One can define F_g and ϕ_g , for g=2, but a computation shows that the dilatation λ_2 of ψ_2 satisfies $\lambda_2^2 \approx 6.018 > 6$.

(b) [P2] shows, using [P1], that $\rho \circ \tau_c \circ \tau_b^{-1} \circ \tau_a$ is p.A. with dilatation l_g that satisfies $l_g \leq (\log 11)/g$. The fact that ψ_g is p.A. does not follow from [P1] as we perform right-handed Dehn twists along two curves that intersect. The method in this note can be extended to produce a large class of p.A. maps. (See [Ba].)

Proof of Proposition 5.

Step 1. We choose $g \ge 3$ and show that we can find the dilatation of $\psi = \psi_g$ by spectrally analyzing the incidence matrix $\operatorname{Inc}(\psi)$. This is a standard technique. We then proceed to demonstrate that the dilatation of ψ is in fact given by the spectral radius of the smaller P.F. matrix $S = S_g$ (as in Lemma 3).

If we identify $V(\tau)$ with a closed cone in \mathbb{R}^{7g} , then $(V(\tau)\setminus\{0\})/\mathbb{R}_+$, where \mathbb{R}_+ denotes the positive real numbers, can be represented by a closed cell. Inc (ψ) induces a continuous self-map of this cell and we conclude from the Brouwer fixed point theorem that there exist $\sigma = \sigma_g > 0$ and $x \in \mathbb{R}^{7g}$ such that $\mathrm{Inc}(\psi)x = \sigma x$. Moreover, x corresponds to a nonzero measure on τ .

We show next that $\sigma > 1$ and that σ is the spectral radius of S. Indeed, we conclude from Lemma 3 that if we define $\bar{x} \in \mathbb{R}^{5g}$ to be the restriction of x onto its first 5g coordinates, then $S\bar{x} = \sigma\bar{x}$. Moreover, x > 0, as follows from Lemma 2, and hence $\bar{x} > 0$. The uniqueness statement of the Perron-Frobenius theorem shows that σ is the spectral radius of S. As S is P.F. and integral, we conclude that $\sigma > 1$.

We claim that σ equals the dilatation $\lambda = \lambda_g$ of ψ_g , and to that end we define $\mu \in V(\tau)$ to be the measure that corresponds to $x \in \mathbb{R}^{7g}$. We further define $(\mathscr{F}, \nu) = \mathscr{F}(\mu)$. We showed above that $\mathrm{Inc}(\psi)x = \sigma x$, hence $\hat{\psi}\mu = \sigma\mu$. As $\mathscr{F} \circ \hat{\psi} = \bar{\psi} \circ \mathscr{F}$, we conclude that $\bar{\psi}(\mathscr{F}, \nu) = (\mathscr{F}, \sigma\nu)$. But there is only one such foliation (class) for a p.A. map with $\sigma > 1$, hence $\sigma = \lambda$ as desired. The claim follows.

Step 2. We need to bound above the spectral radius λ of S. To that end we think of the matrix S and its powers as having g columns, the g elements of each column being 5×5 matrices. We find

where

 $I \in Mat_5(\mathbb{Z})$ is the identity matrix, and $\overline{0} \in Mat_5(\mathbb{Z})$ is the zero matrix.

Note that $A_1^2 = \overline{0}$. We define $A_4 = A_3A_1 + A_2$ and $A_5 = A_1A_3 + A_4$, and find that in case g = 3,

$$S^{3} = \begin{pmatrix} A_{5} & A_{1} & A_{3} \\ A_{2}A_{3} & A_{2} & A_{2}A_{1} \\ A_{3} + A_{2}A_{1} & A_{3} & A_{4} \end{pmatrix}.$$

Furthermore, for g > 4, we claim that

$$S^g = \begin{pmatrix} A_5 & A_1 & \overline{0} & \overline{0} & \overline{0} & \overline{0} & \cdots & \overline{0} & \overline{0} & \overline{0} & A_3 \\ A_2A_3 & A_2 & A_2A_1 & \overline{0} & \overline{0} & \overline{0} & \cdots & \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \overline{A_3} & A_3 & A_4 & A_2A_1 & \overline{0} & \overline{0} & \cdots & \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & A_3 & A_4 & A_2A_1 & \overline{0} & \cdots & \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ & & & & \ddots & & & \\ \overline{0} & \overline{0} & \overline{0} & \overline{0} & \overline{0} & \overline{0} & \cdots & \overline{0} & A_3 & A_4 & A_2A_1 \\ A_2A_1 & \overline{0} & \overline{0} & \overline{0} & \overline{0} & \overline{0} & \cdots & \overline{0} & \overline{0} & A_3 & A_4 \end{pmatrix}.$$

To show that, we choose $g \ge 4$, and define c(i, n) as the *i*th column of S^n , for $1 \le i \le g$ and $1 \le n \le g$. We will only demonstrate that c(i, g) is as asserted for $i \in \{3, \ldots, g-1\}$. The remaining cases are similar.

Note first that c(i, 1) has I in its (i-1)th position and zero matrices $\overline{0}$ in the other positions. We further compute

$$c(i, g - i) = (\overline{0}, ..., \overline{0}, I),$$

$$c(i, g - i + 1) = (I, \overline{0}, ..., \overline{0}),$$

$$c(i, g - i + 2) = (A_1, A_2, A_3, \overline{0}, ..., \overline{0}),$$

$$c(i, g - i + 3) = (\overline{0}, A_2A_1, A_4, A_3, \overline{0}, ..., \overline{0},$$

and

$$c(i, g) = (\overline{0}, \ldots, \overline{0}, A_2A_1, A_4, A_3, \overline{0}, \ldots, \overline{0}),$$

where in the last equation A_2A_1 is in the (i-1)th position as desired.

We now choose $g \in \{3, 4, ...\}$, and note that as $\psi = \psi_g$ is p.A. with dilatation $\lambda = \lambda_g$, then ψ^g is p.A. with dilatation λ^g . We showed in Step 1 that λ is the spectral radius of the P.F. matrix S, hence λ^g is the spectral radius of the P.F. matrix S^g satisfies (see [Ga])

$$\lambda^{g} = \min \left\{ \max_{1 \le i \le 5g} \frac{(S^{g} x)_{i}}{x_{i}} : x \in \mathbb{R}^{5g}, x > 0 \right\},\,$$

and hence

$$\lambda^g \leq \max_{1 \leq i \leq 5g} \frac{(S^g x)_i}{x_i},$$

for any $x \in \mathbb{R}^{5g}$, x > 0.

$$y_1 = (.04, .22, 1.2, .82, .28), \quad y_2 = (.11, .65, 1.47, .48, .8),$$

 $y_3 = (.08, .47, 2.2, .48, .52), \quad \text{and} \quad x = (y_1, y_2, y_3, \dots, y_3) \in \mathbb{R}^{5g},$

then we compute that

$$\frac{(S^g x)_i}{x_i} \le 6, \quad \text{for } i = 1, \ldots, 5g.$$

This completes the proof of the proposition. Q.E.D.

Remark. The estimate can be improved by better choice of x in the proof of Proposition 5. Some values for $(\lambda_g)^g$ (as provided by Matlab) and

g	$(\lambda_g)^g$
3	≈ 5.50
4	≈ 5.35
5	≈ 5.28
6	≈ 5.25
9	≈ 5.21

REFERENCES

- [Ab] W. Abikoff, The real-analytic theory of Teichmüller space, Lecture Notes in Math., vol. 820, Springer-Verlag, 1980.
- [AY] P. Arnoux and J. Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris 292 (1981), 75-78.
- [Ba] M. Bauer, Examples of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 330 (1992), 333-359
- [CB] A. Casson and S. Bleier, Automorphisms of surfaces after Nielson and Thurston, London Mathematical Soc. Student Texts 9, Cambridge Univ. Press, 1988.
- [FLP] A. Fathi, F. Laudenbach, V. Poenaru et al., *Travaux de Thurston sur les surfaces*, Asterisque **66-67**, Sem. Orsay, Soc. Math. de France, 1979.
- [Ga] F. Gantmacher, Theory of matrices (vol. 2), Chelsea, 1960.
- [HP] R. C. Penner (with J. L. Harer), Combinatorics of train tracks, Ann. of Math. Studies, Princeton Univ. Press, 1991.
- [Pa] A. Papadopoulos, Difféomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie, Ann. Sci. Ecole Norm. Sup. 15 (1982), 543-546.
- [P1] R. C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 130 (1988).

- [P2] ____, Bounds on least dilatations (to appear).
- [PP] A. Papadopoulos and R. C. Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987).
- [Th] W. Thurston, The geometry and topology of three-manifolds, Lecture Notes, Princeton Univ., 1978

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009

Current address: Département de Mathématiques, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France